首页> 外文OA文献 >Fast PET Scan Tumor Segmentation using Superpixels, Principal Component Analysis and K-means Clustering
【2h】

Fast PET Scan Tumor Segmentation using Superpixels, Principal Component Analysis and K-means Clustering

机译:使用superpixels,主成分快速pET扫描肿瘤分割   分析和K均值聚类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Positron Emission Tomography scan images are extensively used in radiotherapyplanning, clinical diagnosis, assessment of growth and treatment of a tumor.These all rely on fidelity and speed of detection and delineation algorithm.Despite intensive research, segmentation remained a challenging problem due tothe diverse image content, resolution, shape, and noise. This paper presents afast positron emission tomography tumor segmentation method in whichsuperpixels are extracted first from the input image. Principal componentanalysis is then applied on the superpixels and also on their average. Distancevector of each superpixel from the average is computed in principal componentscoordinate system. Finally, k-means clustering is applied on distance vector torecognize tumor and non-tumor superpixels. The proposed approach is implementedin MATLAB 2016 which resulted in an average Dice similarity of 84.2% on thedataset. Additionally, a very fast execution time was achieved as the number ofsuperpixels and the size of distance vector on which clustering was done wasvery small compared to the number of raw pixels in dataset images.
机译:正电子发射断层扫描扫描图像被广泛用于放射治疗计划,临床诊断,肿瘤生长和治疗的评估,这些都依赖于检测和描绘算法的保真度和速度,尽管进行了深入研究,但由于图像内容的多样性,分割仍然是一个具有挑战性的问题。 ,分辨率,形状和噪音。本文提出了一种快速正电子发射断层扫描肿瘤分割方法,该方法首先从输入图像中提取超像素。然后将主成分分析应用于超像素及其平均像素。在主成分坐标系中计算每个超像素与平均值的距离向量。最后,将k-means聚类应用于距离矢量以识别肿瘤和非肿瘤超像素。所提出的方法在MATLAB 2016中实现,其数据集的平均Dice相似度为84.2%。另外,由于超像素的数量和进行聚类的距离向量的大小与数据集中图像中原始像素的数量相比非常小,因此实现了非常快的执行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号